

Seat No.

H-003-2016031

B. Sc. (Sem. VI) (CBCS) (W.E.F. 2019) Examination

April - 2023

Physics - 601

Faculty Code : 003 Subject Code : 2016031

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instructions :

- (1) All questions are compulsory.
- (2) Symbols have their usual meanings.
- (3) Figures to the right indicate marks.

1 Answer the following in short : 4 (a) The proton and neutron are jointly called . (1)(2)Isobars are atoms of different elements having the same number of . Define mirror nuclei with an example. (3) (4) Write the volume term in the semi-empirical formula. Answer in brief : (any **one**) 2 (b) The binding energy of ${}_{21}Sc^{50}$ is 425 MeV. How much (1)energy is required to remove a nucleon from it ? (2) Calculate the binding energy of ${}_{21}Sc^{50}$ using semiempirical mass formula, if a = 14, b = 13, c = 0.583, d = 19.3 and $\delta = 33.5$. (c) Answer in detail : (any **one**) 3 Write a note on nuclear density. (1)(2) Give evidences of shell model of nucleus. Write notes : (any **one**) 5 (d) Explain variation of binding energy with mass number. (1)(2)Write a note on liquid drop model of the nucleus.

H-003-2016031]

[Contd...

2	(a)	Answer the following in short : 4		
		(1)	Define natural radioactivity.	
		(2)	α -particles produce when they fall on zince sulphide screen.	2
		(3)	The penetrating power of β -particles is (more	1
			less) than that of α -particles.	
		(4)	γ -rays are not affected by and fields	
	(b)	Answer in brief : (any one)		2
		(1)	A radioactive substance has a half-life of 50 days Calculate the radioactive disintegration constant and the average life period.	I
		(2)	A radioactive substance has a decay constant 0.0182 per day. Calculate the time taken for 20% of the original number of atoms to remain unchanged.	2
	(c)	Answer in detail : (any one)		3
		(1)	Write general rules of alpha and beta decay.	
		(2)	Write a note on Nuclear isomerism.	
	(d)	Write notes : (any one)		5
		(1)	Explain half life and mean life.	
		(2)	Write applications of radioisotopes.	
3	(a)	Ansv	ver the following in short :	4
		(1)	What is pair production ?	
		(2)	Write in abbreviated form	
			$_{4}Be^{9} + _{2}He^{4} \rightarrow _{0}n^{1} + _{6}C^{12}$.	
		(3)	Complete the reaction	
			$_{29}Cu^{65} + ___ \rightarrow _{30}Zn^{65} + _0n^1.$	
		(4)	What is Compton scattering ?	
H-003-2016031]			2 [C	ontd

- (b) Answer in brief : (any **one**)
 - (1) Find the Q-value for the reaction ${}_7N^{14}(n,\alpha) {}_5B^{11}$ given $m({}_7N^{14}) = 14.003074 \, u, \, m({}_2He^4) = 4.002604 \, u,$ $m({}_5B^{11}) = 11.009305 \, u, \, m(n) = 1.008665 \, u$ (Take 1u = 931 MeV). State whether the reaction is
 - (2) Write in expanded form :

endothermic or exothermic.

(a) $K^{39}(n, 2n)K^{38}$

(b)
$$Na^{23}(p,\alpha) Ne^{20}$$

- (c) Answer in detail : (any **one**)
 - (1) Explain energy balance in nuclear reactions.
 - (2) Explain transmutation by neutrons.
- (d) Write notes : (any **one**)
 - (1) Explain the conservation laws for nuclear reactions.
 - (2) Expain the construction and working of Scintillation counter.

- (1) Write the formula for the length of the n^{th} cylinder of a linear accelerator.
- (2) Which accelerator contains four magnets connected by four straight sections?
- (3) Name the reactor used to produce fissile materials from fertile materials?
- (4) What are moderators used for in a reactor?
- (b) Answer in brief : (any **one**)
 - (1) Deuterons are accelerated in the cyclotron which has magnetic field of 20000 gauss. Calculate the maximum frequency of the dee voltage, given $q = 1.6 \times 10^{-19}$ C, $m_p = 1.66 \times 10^{-27}$ kg, $m_d = 2.014$ amu.
 - (2) Calculate the energy released by following fission reaction:

$${}_{92}U^{235} + {}_{0}n^{1} \rightarrow {}_{42}Mo^{98} + {}_{50}Sn^{136} + {}_{0}n^{1} + Q$$

Given $m(U) = 235.05 u, m(n) = 1.008665 u,$
 $m(Mo) = 97.906 u, m(Sn) = 135.9072 u.$
[Take 1u = 931 MeV]

3

H-003-2016031]

[Contd...

4

2

3

5

- (c) Answer in detail : (any **one**)
 - (1) Derive betatron condition.
 - (2) Describe self sustaining chain reaction.
- (d) Write notes on : (any **one**)
 - (1) Explain the construction and working of a linear accelerator.
 - (2) Explain the construction and wroking of a power reactor.
- 5 (a) Answer the following in short :
 - (1) Define nuclear fusion.
 - (2) Name the method of plasma confinement in stars.
 - (3) What is the antiparticle of neutron called? Give its symbol.
 - (4) What is the range of gravitational interaction ?
 - (b) Answer in brief : (any **one**)
 - (1) Calculate the energy released when a single helium nucleus is formed by the fusion of a deuterium and a tritium nucleus. Given : m(d) = 2.07478 amu, m(tritium) = 3.017633 amu, m(helium) = 4.00388 amu m(n) = 1.008665 amu. [Take 1u = 931 MeV].
 - (2) Give the quark model for protons and neutrons. Write their charge, Baryon numbers and strangeness numbers.
 - (c) Answer in detail : (any **one**)
 - Explain the construction and working of hydrogen bomb.
 - (2) Explain classification of elementary particles.
 - (d) Write notes : (any **one**)
 - (1) Explain source of stellar energy.
 - (2) Describe conservation laws for elementary particles.

3

5

2

4

3

5